Laparoscopic Surgery in Gynaecological Oncology
Anatomical Considerations

Dr Rajendra A Kerkar MD MRCOG
Whipps Cross Hospital, London, UK
The Anterior Pelvis
Anatomical Landmarks

• The transverse vesical fold
 – Overlies the bladder dome running horizontally between the superior pubic rami
 – Crosses the obliterated hypogastric arteries 2.5cms above the round ligaments

• The obliterated hypogastric arteries
 – Continuation of the internal iliac arteries
 – Run beneath the parietal peritoneum towards the umbilicus
The Anterior Pelvis
Anatomical Landmarks

• The inferior epigastric arteries
 – Terminal branches of the external iliac arteries
 – Wind round the medial edge of the internal inguinal ring
 – Run upwards and medially above the parietal peritoneum along the lateral margins of the rectus muscles
The Anterior Pelvis
Anatomical Landmarks

• Inferior epigastric arteries
 – Lie just lateral to the obliterated hypogastric arteries
 – Enter the rectus sheath at the arcuate line.
 – Generally do not cross the rectus muscles towards the midline
Laparoscopic Surgery In Gynaecological Oncology
The Pelvic Sidewall Triangle
Gateway to the Retroperitoneum

• Boundaries
 – Base : Round ligament
 – Lateral : External iliac artery
 – Medial : Infundibulopelvic (IP) ligament
 – Apex : Where the IP ligament crosses the common iliac artery
The Pelvic Sidewall Triangle
Gateway to the Retroperitoneum

• Access
 – Deviate the uterus to the contralateral side and put the round and IP ligaments on stretch
 – Incise the pelvic peritoneum parallel to the external iliac vessels upto the apex
 – Bluntly dissect the retroperitoneal areolar tissue
 – Meticulous haemostasis of peritoneal and retroperitoneal vessels is essential
The Retroperitoneum
Anatomical Considerations

• The retroperitoneal spaces
• The pelvic ureter
• The pelvic blood vessels
• The low paraaortic region
• The pelvic and paraaortic lymph nodes
The Retroperitoneal Spaces

- Central spaces
 - Retropubic space: Cave of Retzius
 - Vesicovaginal pace
 - Rectovaginal space
 - Retrorectal/Presacral space

- Lateral spaces
 - Paravesical spaces
 - Pararectal spaces
Lateral Retroperitoneal Spaces
The Paravesical Space

• Boundaries
 – Distal : Pubic bone
 – Proximal : Cardinal ligament
 – Medially : Obliterated hypogastric artery
 – Laterally : External iliac vessels and obturator fossa
 – Inferiorly : Pelvic floor (Levator ani)

• Medial paravesical space : between the obliterated hypogastric artery and bladder
Lateral Retroperitoneal Spaces
The Pararectal Space

• Boundaries
 – Lateral : Internal iliac artery
 – Medial : Ureter, uterosacral ligament and rectal pillar
 – Distal : Cardinal ligament and uterine artery

• Medial pararectal space : between the broad ligament peritoneum and the ureters and uterosacral ligaments
Surgical Approach to the Lateral Retroperitoneal Spaces

- Access through the pelvic sidewall triangle
- Bluntly develop the retroperitoneal space
- Identify the ureter at the apex of the pelvic sidewall triangle
- Extend peritoneal incision up to the caecum on the right and descending colon on the left
- “Congenital” adhesions may have to be divided on the left and sigmoid mobilised
Surgical Approach to the Lateral Retroperitoneal Spaces

• Identify the obliterated hypogastric artery retroperitoneally

• Develop the paravesical space by blunt dissection of areolar tissue on either side of the artery - remember the immediate lateral relation of the external iliac vein

• Trace the obliterated hypogastric artery retrograde to define the origin of the uterine artery
Surgical Approach to the Lateral Retroperitoneal Spaces

- Delineate the anterior limit of the cardinal ligament
- Develop the pararectal space by blunt dissection proximal and medial to the cardinal ligament OR
- Identify the ureter at the pelvic brim and bluntly dissect lateral to it while pushing it gently medially with the tip of the suction probe
Obliterated Hypogastric Arteries

Keys to Retroperitoneal Dissection

- Constant landmarks, even in obese patients
- Facilitate dissection of the paravesical spaces
- Help to delineate the uterine arteries and cardinal ligaments
- Completion of the anterior dissection allows precise dissection of the pararectal spaces
The Ureters
Surgical Anatomy

• 25 - 30 cms in length
• Right and left ureters lie 4-5 cms lateral to the IVC and aorta respectively
• Crossed by the ovarian vessels midway between the renal pelvis and the pelvis brim, the left at a higher level than the right
• Ovarian vessels are lateral to the ureters at the pelvic brim
The Pelvic Ureters
Surgical Anatomy

- Crossed by the ovarian vessels from lateral to medial side as the vessels enter the IP ligament at the pelvic brim
- Right ureter usually crosses the external iliac while the left is closer to the midline and crosses the common iliac artery
- Run along the pelvic sidewall just above the internal iliac arteries
The Pelvic Ureters
Surgical Anatomy

• Turn forwards and medially in the base of the broad ligament at the level of the ischial spines
• Pass into the ureteric canal under the uterine arteries, 1.5 cms lateral to the internal cervical os, the left ureter being closer to the cervix
• Turn abruptly medially (genu) over the anterior vaginal fornices to enter the bladder
The Pelvic Ureters
Risk of Surgical Injury

• At the pelvic brim, during division of the IP ligament

• At the ovarian fossa, especially during ovarian resection or in the presence of adhesions

• Lateral to the cervix, while controlling the uterine arteries
The Medial Laparoscopic Approach To The Pelvic Ureters

• Simple : create a “window” in the medial leaf of the broad ligament just above the ureter

• Limitations
 – Works only if anatomy is normal
 – Distal ureter may be difficult to visualise
 – Fails totally in the presence of cul-de-sac pathology
The Superior Laparoscopic Approach To The Pelvic Ureters

• Identify the ureter at the pelvic brim and bluntly dissect it off the medial leaf of the broad ligament

• Limitations
 – Laborious and time consuming
 – Does not facilitate dissection of the distal ureter or uterine arteries
The Lateral Laparoscopic Approach To The Pelvic Ureters

- Open the pelvic sidewall triangle
- Identify the ureter at the apex of the triangle
- Identify the obliterated hypogastric artery and develop the paravesical space
- Identify the uterine artery and delineate the cardinal ligament
- Develop the pararectal space
The Pelvic Blood Vessels

• The common iliac artery
 – Divides into the external and internal iliac arteries in front of the sacroiliac joint
 – The common iliac venous confluence lies just below this bifurcation

• The common iliac artery
 – Runs along the medial edge of the psoas muscle and exits the pelvis below the inguinal ligament
The Pelvic Blood Vessels

- The external iliac artery
- Inferior epigastric and the deep circumflex iliac are the only two branches
 - The external iliac vein is initially directly posterior to the artery but is posteromedial to it in its distal third
- The external iliac artery
 - Runs just lateral to the ureter and uterosacral ligaments
The Pelvic Blood Vessels

• The internal iliac artery
 – The uterine artery arises from its medial aspect and curves on to the cardinal ligament, crossing the ureter 1.5 cm lateral to the supravaginal Cx
 – The superior vesical artery arises from its posterolateral aspect and is usually not seen unless the paravesical space is opened
The Low Paraaortic Region

• Aortic bifurcation
 – Overlies the L4 vertebral body in 75% of cases
 – Lies above L4 in 9% of cases
 – Lies below the L4-L5 disc in 11% of cases
 – Lies within 1.25 cms above or below a line drawn between the iliac crests in 80% of cases
The Low Paraaortic Region

• The inferior Vena Cava
 – Lies posterolateral and to the right of the aorta
 – The lumbar veins join it along its posteroinferior edge
 – The right ovarian vein joins it at the origin of the ovarian arteries from the aorta

• The inferior mesentric artery
 – Arises from the front of the aorta, just below the origin of the ovarian arteries and 4 cms above the aortic bifurcation
The Pelvic Lymph Nodes

- External iliac nodes
 - 8-10 nodes located along the anterolateral and posteromedial aspects of the external iliac vessels
 - The anterolateral chain lies between the psoas muscle and the external iliac artery
 - The posteromedial chain lies between the external and internal iliac vessels and are continuous distally with the deep femoral nodes
 : Interiliac nodes are the main drainage sites for the uterus, Cx, vagina and bladder.
The Pelvic Lymph Nodes

• External iliac nodes
 – The interiliac chain constitutes the primary drainage site for the uterus, Cx, vagina, bladder and urethra

• Parametrial nodes
 – 4-8 nodes located in the lateral parametrium i.e, distal third of the cardinal ligament
 – Directly drain the uterine cervix and isthmus
The Pelvic Lymph Nodes

• Obturator nodes
 – 12-15 nodes located along the obturator nerve in the obturator fossa
 – Majority lie superficial to the obturator nerve
 – Parametrial nodes drain directly into the obturator nodes

• Presacral nodes
 – 2-3 nodes located along the lateral sacral arteries
The Paraaortic Lymph Nodes

• App 45-50 small nodes located along the course of the aorta and IVC

• Classified as:
 – Right paracaval, left paraaortic and aortocaval in uro-oncology literature

• Primary drainage sites for the ovaries and kidneys
Pelvic Lymph Nodes: Surgical Significance

- Interiliac nodes are primarily involved in small volume Stage IB1 Ca, Cx and Ca. Endometrium
- Anterolateral external iliac nodes are not involved if the interiliac nodes are negative for tumour. Involvement is more likely with bulky tumours.
- “Skip” lesions are rare per se but are more likely to occur with cervical adenocarcinomas or in the presence of significant LVS involvement.
Paraaortic Lymph Nodes: Surgical Significance

- Secondary drainage sites for cervical and endometrial cancers and paraaortic node involvement does not occur unless the pelvic nodes are involved.
- Paracaval, paraaortic and aortocaval groups are most likely to be involved in patients with advanced Ca, Cx.
- Retrocaval and retroaortic nodes are usually not involved.